
versioningit
Release 1.1.1

John Thorvald Wodder II

2022 Apr 08

CONTENTS

1 How it Works 3
1.1 Version Calculation . 3
1.2 Setuptools Integration . 3

2 Configuration 5
2.1 Specifying the Method . 5
2.2 The [tool.versioningit.vcs] Subtable . 6
2.3 The [tool.versioningit.tag2version] Subtable . 8
2.4 The [tool.versioningit.next-version] Subtable . 8
2.5 The [tool.versioningit.format] Subtable . 9
2.6 The [tool.versioningit.write] Subtable . 10
2.7 The [tool.versioningit.onbuild] Subtable . 10
2.8 tool.versioningit.default-version . 12
2.9 Log Level Environment Variable . 12

3 Getting Package Version at Runtime 13

4 Command 15
4.1 Options . 15

5 Library API 17
5.1 High-Level Functions . 17
5.2 Low-Level Class . 18
5.3 Exceptions . 19
5.4 Utilities . 20
5.5 Passing Explicit Configuration . 21

6 Writing Your Own Methods 23
6.1 vcs . 23
6.2 tag2version . 24
6.3 next-version . 24
6.4 format . 24
6.5 write . 25
6.6 onbuild . 25
6.7 Distributing Your Methods in an Extension Package . 25

7 Restrictions & Caveats 27

8 Changelog 29
8.1 v1.1.1 (2022-04-08) . 29
8.2 v1.1.0 (2022-03-03) . 29

i

8.3 v1.0.0 (2022-02-06) . 29
8.4 v0.3.3 (2022-02-04) . 30
8.5 v0.3.2 (2022-01-16) . 30
8.6 v0.3.1 (2022-01-02) . 30
8.7 v0.3.0 (2021-09-27) . 30
8.8 v0.2.1 (2021-08-02) . 30
8.9 v0.2.0 (2021-07-13) . 31
8.10 v0.1.0 (2021-07-08) . 31
8.11 v0.1.0a1 (2021-07-05) . 31

9 Installation & Setup 33

10 Example Configurations 35

11 Indices and Tables 37

Python Module Index 39

Index 41

ii

versioningit, Release 1.1.1

GitHub | PyPI | Documentation | Issues | Changelog

CONTENTS 1

https://github.com/jwodder/versioningit
https://pypi.org/project/versioningit/
https://versioningit.readthedocs.io
https://github.com/jwodder/versioningit/issues

versioningit, Release 1.1.1

2 CONTENTS

CHAPTER

ONE

HOW IT WORKS

versioningit divides its operation into six steps: vcs, tag2version, next-version, format, write, and
onbuild. The first four steps make up the actual version calculation, while the write and onbuild steps normally
only happen while building with setuptools.

1.1 Version Calculation

The version for a given project is determined as follows:

• vcs step: The version control system specified in the project’s versioningit configuration is queried for infor-
mation about the project’s working directory: the most recent tag, the number of commits since that tag, whether
there are any uncommitted changes, and other data points.

• tag2version step: A version is extracted from the tag returned by the vcs step

• If there have been no commits or uncommitted changes since the most recent tag, the version returned by the
tag2version step is used as the project version. Otherwise:

– next-version step: The next version after the most recent version is calculated

– format step: The results of the preceding steps are combined to produce a final project version.

1.2 Setuptools Integration

1.2.1 Setting the Version

versioningit registers a setuptools.finalize_distribution_options entry point that causes it to be run
whenever setuptools computes the metadata for a project in an environment in which versioningit is installed.
If the project in question has a pyproject.toml file with a [tool.versioningit] table, then versioningit
performs the version calculations described above and sets the project’s version to the final value. (If a version cannot
be determined because the project is not in a repository or repository archive, then versioningit will assume the
project is an unpacked sdist and will look for a PKG-INFO file to fetch the version from instead.) If the pyproject.
toml contains a [tool.versioningit.write] table, then the write step will also be run at this time; the default
write method creates a file at a specified path containing the project’s version.

3

versioningit, Release 1.1.1

1.2.2 onbuild Step

When a project is built that uses versioningit’s custom setuptools commands, the onbuild step becomes added to
the build process. The default onbuild method updates one of the files in the built distribution to contain the project
version while leaving the source files in the actual project alone. See “The [tool.versioningit.onbuild] Subtable” for
more information.

4 Chapter 1. How it Works

CHAPTER

TWO

CONFIGURATION

The [tool.versioningit] table in pyproject.toml is divided into six subtables, each describing how one of the
six steps of the version extraction & calculation should be carried out. Each subtable consists of an optional method
key specifying the method (entry point or function) that should be used to carry out that step, plus zero or more extra
keys that will be passed as parameters to the method when it’s called. If the method key is omitted, the default method
for the step is used.

2.1 Specifying the Method

A method can be specified in two different ways, depending on where it’s implemented. A method that is built in to
versioningit or provided by an installed third-party extension is specified by giving its name as a string, e.g.:

[tool.versioningit.vcs]
The method key:
method = "git" # <- The method name

Parameters to pass to the method:
match = ["v*"]
default-tag = "1.0.0"

Alternatively, a method can be implemented as a function in a Python source file in your project directory (either
part of the main Python package or in an auxiliary file); see “Writing Your Own Methods” for more information.
To tell versioningit to use such a method, set the method key to a table with a module key giving the dotted
name of the module in which the method is defined and a value key giving the name of the callable object in the
module that implements the method. For example, if you created a custom next-version method that’s named
my_next_version() and is located in mypackage/mymodule.py, you would write:

[tool.versioningit.next-version]
method = { module = "mypackage.module", value = "my_next_version" }
Put any parameters here

Note that this assumes that mypackage/ is located at the root of the project directory (i.e., the directory containing the
pyproject.toml file); if is located inside another directory, like src/, you will need to add a module-dir key to the
method table giving the path to that directory relative to the project root, like so:

[tool.versioningit.next-version]
method = { module = "mypackage.module", value = "my_next_version", module-dir = "src" }
Put any parameters here

As a special case, if there are no parameters for a given step, the respective subtable can be replaced by the method
specification, e.g.:

5

versioningit, Release 1.1.1

[tool.versioningit]
Use the "git" method for the vcs step with no parameters:
vcs = "git"
Use a custom function for the next-version step with no parameters:
next-version = { module = "mypackage.module", value = "my_next_version" }

2.2 The [tool.versioningit.vcs] Subtable

The vcs subtable specifies the version control system used by the project and how to extract the tag and related infor-
mation from it. versioningit provides three vcs methods: "git" (the default), "git-archive", and "hg".

2.2.1 "git"

The "git" method relies on the project directory being located inside a Git repository with one or more commits. Git
1.8.0 or higher must be installed, though some optional features require more recent Git versions.

The "git" method takes the following parameters, all optional:

match [list of strings] A set of fileglob patterns to pass to the --match option of git describe to make Git only
consider tags matching the given pattern(s). Defaults to an empty list.

Note: Specifying more than one match pattern requires Git 2.13.0 or higher.

exclude [list of strings] A set of fileglob patterns to pass to the --exclude option of git describe to make Git
not consider tags matching the given pattern(s). Defaults to an empty list.

Note: This option requires Git 2.13.0 or higher.

default-tag [string] If git describe cannot find a tag, versioningit will raise a versioningit.errors.
NoTagError unless default-tag is set, in which case it will act as though the initial commit is tagged with
the value of default-tag

2.2.2 "git-archive"

This method is experimental and may change in future releases.

The "git-archive" method is a variation of the "git" method that also supports determining the version when
installing from a properly-prepared Git archive. The method takes the following parameters:

describe-subst [string] (required) Set this to "$Format:%(describe)$" and add the line pyproject.toml
export-subst to your repository’s .gitattributes file. This will cause any Git archive made from your
repository from this point forward to contain the minimum necessary information to determine a version.

match and exclude options are set by including them in the format placeholder like so:

Match 'v*' tags:
describe-subst = "$Format:%(describe:match=v*)$"

Match 'v*' and 'r*' tags:
(continues on next page)

6 Chapter 2. Configuration

versioningit, Release 1.1.1

(continued from previous page)

describe-subst = "$Format:%(describe:match=v*,match=r*)$"

Match 'v*' tags, exclude '*-final' tags:
describe-subst = "$Format:%(describe:match=v*,exclude=*-final)$"

By default, only annotated tags are considered, and lightweight tags are ignored; this can be changed by including
the “tags” option in the placeholder like so:

Honor all tags:
describe-subst = "$Format:%(describe:tags)$"

Honor all tags, exclude '*rc' tags:
describe-subst = "$Format:%(describe:tags,exclude=*rc)$"

Options other than “match”, “exclude”, and “tags” are not supported by versioningit and will result in an
error.

default-tag [string] (optional) If git describe cannot find a tag, versioningit will raise a versioningit.
errors.NoTagError unless default-tag is set, in which case it will act as though the initial commit is tagged
with the value of default-tag.

Note that this parameter has no effect when installing from a Git archive; if the repository that the archive was
produced from had no relevant tags for the archived commit (causing the value of describe-subst to be set to
the empty string), versioningit will raise an error when trying to install the archive.

Note that, in order to provide a consistent set of information regardless of whether installing from a repository or an
archive, the "git-archive" method provides the format step with only a subset of the fields that the "git" method
does; see below for more information.

Changed in version 1.0.0: The “match” and “exclude” settings are now parsed from the describe-subst parameter,
which is now required, and the old match and exclude parameters are now ignored. Also, support for the “tags”
option was added.

A note on Git version requirements

• The %(describe)s placeholder was only added to Git in version 2.32.0, and so a Git repository archive must
be created using at least that version in order to be installable with this method. Fortunately, GitHub repository
ZIP downloads support %(describe), and so pip-installing a “git-archive”-using project from a URL of the
form https://github.com/$OWNER/$REPO/archive/$BRANCH.zip will work.

• The %(describe)s placeholder only gained support for the “tags” option in Git 2.35.0, and so, if this option
is included in the describe-subst parameter, that Git version or higher will be required when creating a
repository archive in order for the result to be installable. Unfortunately, as of 2022-02-05, GitHub repository
Zips do not support this option.

• When installing from a Git repository rather than an archive, the “git-archive” method parses the
describe-subst parameter into the equivalent git describe options, so a bleeding-edge Git is not re-
quired in that situation (but see the version requirements for the “git” method above).

Note: In order to avoid DOS attacks, Git will not expand more than one %(describe)s placeholder per archive, and
so you should not have any other $Format:%(describe)$ placeholders in your repository.

2.2. The [tool.versioningit.vcs] Subtable 7

versioningit, Release 1.1.1

Note: This method will not work correctly if you have a tag that resembles git describe output, i.e., that is of the
form <anything>-<number>-g<hex-chars>. So don’t do that.

2.2.3 "hg"

The "hg" method supports installing from a Mercurial repository or archive. When installing from a repository, Mer-
curial 5.2 or higher must be installed.

The "hg" method takes the following parameters, all optional:

pattern [string] A revision pattern (See hg help revisions.patterns) to pass to the latesttag() template
function. Note that this parameter has no effect when installing from a Mercurial archive.

default-tag [string] If there is no latest tag, versioningit will raise a versioningit.errors.NoTagError
unless default-tag is set, in which case it will act as though the initial commit is tagged with the value of
default-tag

2.3 The [tool.versioningit.tag2version] Subtable

The tag2version subtable specifies how to extract the version from the tag found by the vcs step. versioningit
provides one tag2version method, "basic" (the default), which proceeds as follows:

• If the rmprefix parameter is set to a string and the tag begins with that string, the given string is removed from
the tag.

• If the rmsuffix parameter is set to a string and the tag ends with that string, the given string is removed from
the tag.

• If the regex parameter is set to a string (a Python regex) and the regex matches the tag (using re.search), the
tag is replaced with the contents of the capturing group named “version”, or the entire matched text if there
is no group by that name. If the regex does not match the tag, the behavior depends on the require-match
parameter: if true, an error is raised; if false or unset, the tag is left as-is.

• Finally, any remaining leading v’s are removed from the tag.

A warning is emitted if the resulting version is not PEP 440-compliant.

2.4 The [tool.versioningit.next-version] Subtable

The next-version subtable specifies how to calculate the next release version from the version extracted from the
VCS tag. versioningit provides the following next-version methods; none of them take any parameters.

minor (default) Strips the input version down to just the epoch segment (if any) and release segment (i.e., the N(.
N)* bit), increments the second component of the release segment, and replaces the following components with
a single zero. For example, if the version extracted from the VCS tag is 1.2.3.4, the "minor" method will
calculate a new version of 1.3.0.

minor-release Like minor, except that if the input version is a prerelease or development release, the base version
is returned; e.g., 1.2.3a0 becomes 1.2.3. This method requires the input version to be PEP 440-compliant.

smallest Like minor, except that it increments the last component of the release segment. For example, if the version
extracted from the VCS tag is 1.2.3.4, the "smallest" method will calculate a new version of 1.2.3.5.

8 Chapter 2. Configuration

https://docs.python.org/3/library/re.html#re.search
https://peps.python.org/pep-0440/
https://peps.python.org/pep-0440/

versioningit, Release 1.1.1

smallest-release Like smallest, except that if the input version is a prerelease or development release, the base
version is returned; e.g., 1.2.3a0 becomes 1.2.3. This method requires the input version to be PEP 440-
compliant.

null Returns the input version unchanged. Useful if your repo version is something horrible and unparseable.

A warning is emitted if the resulting version is not PEP 440-compliant.

2.5 The [tool.versioningit.format] Subtable

The format subtable specifies how to format the project’s final version based on the information calculated in previous
steps. (Note that, if the repository’s current state is an exact tag match, this step will be skipped and the version returned
by the tag2version step will be used as the final version.) versioningit provides one format method, "basic"
(the default).

The data returned by the vcs step includes a repository state (describing the relationship of the repository’s current
contents to the most recent tag) and a collection of format fields. The "basic" format method takes the name of that
state, looks up the format parameter with the same name (falling back to a default, given below) to get a format template
string, and formats the template using the given format fields plus {version}, {next_version}, and {branch} fields.
A warning is emitted if the resulting version is not PEP 440-compliant.

For the built-in vcs methods, the repository states are:

distance One or more commits have been made on the current branch since the latest tag
dirty No commits have been made on the branch since the latest tag, but the repository has uncommitted

changes
distance-dirtyOne or more commits have been made on the branch since the latest tag, and the repository has

uncommitted changes

For the built-in vcs methods, the available format fields are:

{author_date} The author date of the HEAD commit1 ("git" only)
{branch} The name of the current branch (with non-alphanumeric characters converted to periods), or None

if the branch cannot be determined
{build_date} The current date & time, or the date & time specified by the environment variable

SOURCE_DATE_EPOCH if it is set1
{committer_date}The committer date of the HEAD commit1 ("git" only)
{distance} The number of commits since the most recent tag
{next_version}The next release version, calculated by the next-version step
{rev} The abbreviated hash of the HEAD commit
{revision} The full hash of the HEAD commit ("git" and "hg” only)
{vcs} The first letter of the name of the VCS (i.e., “g” or “h”)
{vcs_name} The name of the VCS (i.e., “git” or “hg”)
{version} The version extracted from the most recent tag

The default parameters for the format step are:

[tool.versioningit.format]
distance = "{version}.post{distance}+{vcs}{rev}"
dirty = "{version}+d{build_date:%Y%m%d}"
distance-dirty = "{version}.post{distance}+{vcs}{rev}.d{build_date:%Y%m%d}"

1 These fields are UTC datetime.datetime objects. They are formatted with strftime() formats by writing {fieldname:format}, e.g.,
{build_date:%Y%m%d}.

2.5. The [tool.versioningit.format] Subtable 9

https://peps.python.org/pep-0440/
https://peps.python.org/pep-0440/
https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library/string.html#format-string-syntax
https://peps.python.org/pep-0440/

versioningit, Release 1.1.1

2.6 The [tool.versioningit.write] Subtable

The write subtable enables an optional feature, writing the final version to a file. Unlike the other subtables, if the
write subtable is omitted, the corresponding step will not be carried out.

versioningit provides one write method, "basic" (the default), which takes the following parameters:

file [string] (required) The path to the file to which to write the version, relative to the root of your project directory.
This path should use forward slashes (/) as the path separator, even on Windows.

Note: This file should not be committed to version control, but it should be included in your project’s built
sdists and wheels.

encoding [string] (optional) The encoding with which to write the file. Defaults to UTF-8.

template: string (optional) The content to write to the file (minus the final newline, which versioningit adds
automatically), as a string containing a {version} placeholder. If this parameter is omitted, the default is
determined based on the file parameter’s file extension. For .txt files and files without an extension, the
default is:

{version}

while for .py files, the default is:

__version__ = "{version}"

If template is omitted and file has any other extension, an error is raised.

Note: When testing out your configuration with the versioningit command (See Command), you will need to pass
the --write option if you want the [tool.versioningit.write] subtable to take effect.

2.7 The [tool.versioningit.onbuild] Subtable

New in version 1.1.0.

The onbuild subtable configures an optional feature, inserting the project version into built project trees when building
an sdist or wheel. Specifically, this feature allows you to create sdists & wheels in which some file has been modified
to contain the line __version__ = "<project version>" or similar while leaving your repository alone.

In order to use this feature, in addition to filling out the subtable, your project must include a setup.py file that passes
versioningit.get_cmdclasses() as the cmdclass argument to setup(), e.g.:

from setuptools import setup
from versioningit import get_cmdclasses

setup(
cmdclass=get_cmdclasses(),
Other arguments go here

)

10 Chapter 2. Configuration

versioningit, Release 1.1.1

versioningit provides one onbuild method, "replace-version" (the default). It scans a given file for a line
matching a given regex and inserts the project version into the first line that matches. The method takes the following
parameters:

source-file [string] (required) The path to the file to modify, relative to the root of your project directory. This path
should use forward slashes (/) as the path separator, even on Windows.

build-file [string] (required) The path to the file to modify when building a wheel. This path should be the lo-
cation of the file when your project is installed, relative to the root of the installation directory. For exam-
ple, if source-file is "src/mypackage/__init__.py", where src/ is your project dir, set build-file
to "mypackage/__init__.py. If you do not use a src/-layout or other remapping of package files, set
build-file to the same value as source-file.

This path should use forward slashes (/) as the path separator, even on Windows.

encoding [string] (optional) The encoding with which to read & write the file. Defaults to UTF-8.

regex [string] (optional) A Python regex that is tested against each line of the file using re.search. The first line
that matches is updated as follows:

• If the regex contains a capturing group named “version”, the substring matched by the group is replaced
with the expansion of replacement (see below). If version did not participate in the match, an error is
raised.

• Otherwise, the entire substring of the line matched by the regex is replaced by the expansion of
replacement.

The default regex is:

^\s*__version__\s*=\s*(?P<version>.*)

require-match [boolean] (optional) If regex does not match any lines in the file and append-line is not set, an
error will be raised if require-match is true (default: false).

replacement [string] (optional) The string used to replace the relevant portion of the matched line. The string is first
expanded by replacing any occurrences of {version} with the project version, and then any backreferences to
capturing groups in the regex are expanded.

The default value is "{version}" (that is, the version enclosed in double quotes).

append-line [string] (optional) If regex does not match any lines in the file and append-line is set, any occur-
rences of {version} in append-line are replaced with the project version, and the resulting line is appended
to the end of the file.

Thus, with the default settings, "replace-version" finds the first line in the given file of the form “__version__ =
...” and replaces the part after the = with the project version in double quotes; if there is no such line, the file is left
unmodified.

Note: Because the onbuild step runs both when building an sdist from the repository and when building a wheel
from an sdist, the configuration should be such that running the step a second time doesn’t change the file any further.
(The technical term for this is “idempotence”)

Note: If you use this feature and run python setup.py directly (as opposed to building with build or similar), you
must invoke setup.py from the root project directory (the one containing your setup.py).

Tip: You are encouraged to test your onbuild configuration by building an sdist and wheel for your project and
examining the files within to ensure that they look how you want. An sdist can be expanded by running tar zxf

2.7. The [tool.versioningit.onbuild] Subtable 11

https://docs.python.org/3/library/re.html#re.search

versioningit, Release 1.1.1

filename, and a wheel can be expanded by running unzip filename.

2.8 tool.versioningit.default-version

The final key in the [tool.versioningit] table is default-version, which is a string rather than a subtable.
When this key is set and an error occurs during version calculation, versioningit will set your package’s version
to the given default version. When this key is not set, any errors that occur inside versioningit will cause the
build/install process to fail.

Note that default-version is not applied if an error occurs while parsing the [tool.versioningit] table; how-
ever, such errors can be caught ahead of time by running the versioningit command (See “Command”).

2.9 Log Level Environment Variable

When versioningit is invoked via the setuptools plugin interface, it logs various information to stderr. By
default, only messages at WARNING level or higher are displayed, but this can be changed by setting the
VERSIONINGIT_LOG_LEVEL environment variable to the name of a Python logging level (case insensitive) or the equiv-
alent integer value.

12 Chapter 2. Configuration

https://docs.python.org/3/library/logging.html#logging-levels

CHAPTER

THREE

GETTING PACKAGE VERSION AT RUNTIME

Automatically setting your project’s version is all well and good, but you usually also want to expose that version at
runtime, usually via a __version__ variable. There are three options for doing this:

1. Use the version() function in importlib.metadata to get your package’s version, like so:

from importlib.metadata import version

__version__ = version("mypackage")

Note that importlib.metadata was only added to Python in version 3.8. If you wish to support older Python
versions, use the importlib-metadata backport available on PyPI for those versions, e.g.:

try:
from importlib.metadata import version

except ImportError:
from importlib_metadata import version

__version__ = version("mypackage")

If relying on the backport, don’t forget to include importlib-metadata; python_version < "3.8" in your
project’s install_requires!

2. Fill out the [tool.versioningit.write] subtable in pyproject.toml so that the project version will be
written to a file in your Python package which you can then import or read. For example, if your package is
named mypackage and is stored in a src/ directory, you can write the version to a Python file src/mypackage/
_version.py like so:

[tool.versioningit.write]
file = "src/mypackage/_version.py"

Then, within mypackage/__init__.py, you can import the version like so:

from ._version import __version__

Alternatively, you can write the version to a text file, say, src/mypackage/VERSION:

[tool.versioningit.write]
file = "src/mypackage/VERSION"

and then read the version in at runtime with:

from pathlib import Path
__version__ = Path(__file__).with_name("VERSION").read_text().strip()

13

https://docs.python.org/3/library/importlib.metadata.html#module-importlib.metadata
https://docs.python.org/3/library/importlib.metadata.html#module-importlib.metadata
https://pypi.org/project/importlib-metadata/

versioningit, Release 1.1.1

3. (New in version 1.1.0) Fill out the [tool.versioningit.onbuild] subtable in pyproject.toml and config-
ure your setup.py to use versioningit’s custom setuptools commands. This will allow you to create sdists
& wheels in which some file has been modified to contain the line __version__ = "<project version>"
or similar while leaving your repository alone. See “The [tool.versioningit.onbuild] Subtable” for more infor-
mation.

Tip: Wondering which of write and onbuild is right for your project? See this table for a comparison:

write onbuild

Should affected file be under version control? No Yes
Affected file must already exist? No Yes
Modifies working tree?1 Yes No
Requires configuration in setup.py? No Yes
Run when installing in editable mode? Yes No

1 That is, the write method causes a file to be present (though likely ignored) in your repository after running, while the onbuild method only
modifies a file inside sdists & wheels and leaves the original copy in your repository unchanged.

14 Chapter 3. Getting Package Version at Runtime

CHAPTER

FOUR

COMMAND

versioningit [<options>] [<project-dir>]

When versioningit is installed in the current Python environment, a command of the same name will be available
that prints out the version for a given versioningit-enabled project (by default, the project rooted in the current
directory). This can be used to test out your versioningit setup before publishing.

4.1 Options

-n, --next-version

Instead of printing the current version of the project, print the value of the next release version as computed by
the next-version step

--traceback

Normally, any library errors are shown as just the error message. Specify this option to show the complete error
traceback.

-v, --verbose

Increase the amount of log messages displayed. Specify twice for maximum information.

The logging level can also be set via the VERSIONINGIT_LOG_LEVEL environment variable. If both -v and
VERSIONINGIT_LOG_LEVEL are specified, the more verbose log level of the two will be used, where one -v
corresponds to INFO level and two or more correspond to DEBUG level. (If neither are specified, the default level
of WARNING is used.)

-w, --write

Write the version to the file specified in the [tool.versioningit.write] subtable, if so configured

15

versioningit, Release 1.1.1

16 Chapter 4. Command

CHAPTER

FIVE

LIBRARY API

5.1 High-Level Functions

versioningit.get_version(project_dir: Union[str, pathlib.Path] = '.', config: Optional[dict] = None, write:
bool = False, fallback: bool = True)→ str

Determine the version for the project at project_dir.

If config is None, then project_dir must contain a pyproject.toml file containing a [tool.
versioningit] table; if it does not, a NotVersioningitError is raised. If config is not None, then any
pyproject.toml file in project_dir will be ignored, and the configuration will be taken from config in-
stead; see “Passing Explicit Configuration”.

If write is true, then the file specified in the [tool.versioningit.write] subtable, if any, will be updated.

If fallback is true, then if project_dir is not under version control (or if the VCS executable is not installed),
versioningit will assume that the directory is an unpacked sdist and will read the version from the PKG-INFO
file.

Raises

• NotVCSError – if fallback is false and project_dir is not under version control

• NotSdistError – if fallback is true, project_dir is not under version control, and
there is no PKG-INFO file in project_dir

• NotVersioningitError –

– if config is None and project_dir does not contain a pyproject.toml file

– if the pyproject.toml file does not contain a [tool.versioningit] table

• ConfigError – if any of the values in config are not of the correct type

• MethodError – if a method returns a value of the wrong type

versioningit.get_next_version(project_dir: Union[str, pathlib.Path] = '.', config: Optional[dict] = None)→
str

New in version 0.3.0.

Determine the next version after the current VCS-tagged version for project_dir.

If config is None, then project_dir must contain a pyproject.toml file containing a [tool.
versioningit] table; if it does not, a NotVersioningitError is raised. If config is not None, then any
pyproject.toml file in project_dir will be ignored, and the configuration will be taken from config in-
stead; see “Passing Explicit Configuration”.

Raises

17

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

versioningit, Release 1.1.1

• NotVCSError – if project_dir is not under version control

• NotVersioningitError –

– if config is None and project_dir does not contain a pyproject.toml file

– if the pyproject.toml file does not contain a [tool.versioningit] table

• ConfigError – if any of the values in config are not of the correct type

• MethodError – if a method returns a value of the wrong type

versioningit.get_cmdclasses(bases: Optional[Dict[str, Type[Command]]] = None)→ Dict[str,
Type[Command]]

New in version 1.1.0.

Return a dict of custom setuptools Command classes, suitable for passing to the cmdclass argument of
setuptools.setup(), that run the onbuild step for the project when building an sdist or wheel. Specifi-
cally, the dict contains a subclass of setuptools.command.sdist.sdist at the "sdist" key and a subclass
of setuptools.command.build_py.build_py at the "build_py" key.

A dict of alternative base classes can optionally be supplied; if the dict contains an "sdist" entry, that entry
will be used as the base class for the customized sdist command, and likewise for "build_py". All other
classes in the input dict are passed through unchanged.

5.2 Low-Level Class

class versioningit.Versioningit

A class for getting a version-controlled project’s current version based on its most recent tag and the difference
therefrom

classmethod from_project_dir(project_dir: Union[str, pathlib.Path] = '.', config: Optional[dict] =
None)→ versioningit.core.Versioningit

Construct a Versioningit object for the project rooted at project_dir (default: the current directory).

If config is None, then project_dir must contain a pyproject.toml file containing a [tool.
versioningit] table; if it does not, a NotVersioningitError is raised. If config is not None, then any
pyproject.toml file in project_dir will be ignored, and the configuration will be taken from config
instead. See “Passing Explicit Configuration”.

Raises

• NotVersioningitError –

– if config is None and project_dir does not contain a pyproject.toml file

– if config is None and the pyproject.toml file does not contain a [tool.
versioningit] table

• ConfigError – if the tool.versioningit key, config, or any subfields are not of the
correct type

get_version()→ str
Determine the version for project_dir

Raises MethodError – if a method returns a value of the wrong type

18 Chapter 5. Library API

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

versioningit, Release 1.1.1

do_vcs()→ versioningit.core.VCSDescription
Run the vcs step

Raises MethodError – if the method does not return a VCSDescription

do_tag2version(tag: str)→ str
Run the tag2version step

Raises MethodError – if the method does not return a str

do_next_version(version: str, branch: Optional[str])→ str
Run the next-version step

Raises MethodError – if the method does not return a str

do_format(description: versioningit.core.VCSDescription, version: str, next_version: str)→ str
Run the format step

Raises MethodError – if the method does not return a str

do_write(version: str)→ None
Run the write step

do_onbuild(build_dir: Union[str, pathlib.Path], is_source: bool, version: str)→ None
New in version 1.1.0.

Run the onbuild step

5.3 Exceptions

exception versioningit.Error

Base class of all versioningit-specific errors

exception versioningit.ConfigError

Bases: versioningit.errors.Error, ValueError

Raised when the versioningit configuration contain invalid settings

exception versioningit.InvalidTagError

Bases: versioningit.errors.Error, ValueError

Raised by tag2version methods when passed a tag that they cannot work with

exception versioningit.InvalidVersionError

Bases: versioningit.errors.Error, ValueError

Raised by next-version methods when passed a version that they cannot work with

exception versioningit.MethodError

Bases: versioningit.errors.Error

Raised when a method is invalid or returns an invalid value

exception versioningit.NoTagError

Bases: versioningit.errors.Error

Raised when a tag cannot be found in version control

5.3. Exceptions 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

versioningit, Release 1.1.1

exception versioningit.NotSdistError

Bases: versioningit.errors.Error

Raised when attempting to read a PKG-INFO file from a directory that doesn’t have one

exception versioningit.NotVCSError

Bases: versioningit.errors.Error

Raised when versioningit is run in a directory that is not under version control or when the relevant VCS
program is not installed

exception versioningit.NotVersioningitError

Bases: versioningit.errors.Error

Raised when versioningit is used on a project that does not have versioningit enabled

5.4 Utilities

class versioningit.VCSDescription(tag: str, state: str, branch: Optional[str], fields: Dict[str, Any])
A description of the state of a version control repository

branch: Optional[str]

The name of the repository’s current branch, or None if it cannot be determined or does not apply

fields: Dict[str, Any]

A dict of additional information about the repository state to make available to the formatmethod Custom
vcs methods are advised to adhere closely to the set of fields used by the built-in methods.

state: str

The relationship of the repository’s current state to the tag. If the repository state is exactly the tagged
state, this field should equal "exact"; otherwise, it will be a string that will be used as a key in
the [tool.versioningit.format] subtable. Recommended values are "distance", "dirty", and
"distance-dirty".

tag: str

The name of the most recent tag in the repository (possibly after applying any match or exclusion rules
based on user parameters) from which the current repository state is descended

versioningit.get_version_from_pkg_info(project_dir: Union[str, pathlib.Path])→ str
Return the Version field from the PKG-INFO file in project_dir

Raises

• NotSdistError – if there is no PKG-INFO file

• ValueError – if the PKG-INFO file does not contain a Version field

versioningit.run_onbuild(*, build_dir: Union[str, pathlib.Path], is_source: bool, version: str, project_dir:
Union[str, pathlib.Path] = '.', config: Optional[dict] = None)→ None

New in version 1.1.0.

Run the onbuild step for the given project.

If config is None, then project_dir must contain a pyproject.toml file containing a [tool.
versioningit] table; if it does not, a NotVersioningitError is raised. If config is not None, then any
pyproject.toml file in project_dir will be ignored, and the configuration will be taken from config in-
stead; see “Passing Explicit Configuration”.

20 Chapter 5. Library API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

versioningit, Release 1.1.1

Parameters

• build_dir – The directory containing the in-progress build

• is_source – Set to True if building an sdist or other artifact that preserves source paths,
False if building a wheel or other artifact that uses installation paths

• version – The project’s version

Raises

• NotVersioningitError –

– if config is None and project_dir does not contain a pyproject.toml file

– if the pyproject.toml file does not contain a [tool.versioningit] table

• ConfigError – if any of the values in config are not of the correct type

• MethodError – if a method returns a value of the wrong type

5.5 Passing Explicit Configuration

The functions & methods that take a path to a project directory normally read the project’s configuration from the
pyproject.toml file therein, but they can also be passed a config argument to take the configuration from instead,
in which case pyproject.toml will be ignored and need not even exist.

A config argument must be a dict whose structure mirrors the structure of the [tool.versioningit] table in
pyproject.toml. For example, the following TOML configuration:

[tool.versioningit.vcs]
method = "git"
match = ["v*"]

[tool.versioningit.next-version]
method = { module = "setup", value = "my_next_version" }

[tool.versioningit.format]
distance = "{next_version}.dev{distance}+{vcs}{rev}"
dirty = "{version}+dirty"
distance-dirty = "{next_version}.dev{distance}+{vcs}{rev}.dirty"

corresponds to the following Python config value:

{
"vcs": {

"method": "git",
"match": ["v*"],

},
"next-version": {

"method": {
"module": "setup",
"value": "my_next_version",

},
},
"format": {

"distance": "{next_version}.dev{distance}+{vcs}{rev}",
(continues on next page)

5.5. Passing Explicit Configuration 21

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

versioningit, Release 1.1.1

(continued from previous page)

"dirty": "{version}+dirty",
"distance-dirty": "{next_version}.dev{distance}+{vcs}{rev}.dirty",

},
}

This is the same structure that you would get by reading from the pyproject.toml file like so:

import tomli

with open("pyproject.toml", "rb") as fp:
config = tomli.load(fp)["tool"]["versioningit"]

When passing versioningit configuration as a config argument, an alternative way to specify methods becomes
available: in place of a method specification, one can pass a callable object directly.

22 Chapter 5. Library API

CHAPTER

SIX

WRITING YOUR OWN METHODS

Changed in version 1.0.0: User parameters, previously passed as keyword arguments, are now passed as a single params
argument.

If you need to customize how a versioningit step is carried out, you can write a custom function in a Python module
in your project directory and point versioningit to that function as described under “Specifying the Method”.

When a custom function is called, it will be passed a step-specific set of arguments, as documented below, plus all of the
parameters specified in the step’s subtable in pyproject.toml. (The arguments are passed as keyword arguments, so
custom methods need to give them the same names as documented here.) For example, given the below configuration:

[tool.versioningit.vcs]
method = { module = "ving_methods", value = "my_vcs", module-dir = "tools" }
tag-dir = "tags"
annotated-only = true

versioningit will carry out the vcs step by calling my_vcs() in ving_methods.py in the tools/ direc-
tory with the arguments project_dir (set to the directory in which the pyproject.toml file is located) and
params={"tag-dir": "tags", "annotated-only": True}.

If a user-supplied parameter to a method is invalid, the method should raise a versioningit.errors.ConfigError.
If a method is passed a parameter that it does not recognize, it should ignore it.

If you choose to store your custom methods in your setup.py, be sure to place the call to setup() under an if
__name__ == "__main__": guard so that the module can be imported without executing setup().

If you store your custom methods in a module other than setup.py that is not part of the project’s Python package
(e.g., if the module is stored in a tools/ directory), you need to ensure that the module is included in your project’s
sdists but not in wheels.

If your custom method depends on any third-party libraries, they must be listed in your project’s build-system.
requires.

6.1 vcs

A custom vcs method is a callable with the following synopsis:

funcname(*, project_dir: Union[str, pathlib.Path], params: Dict[str, Any])→ versioningit.VCSDescription

Parameters

• project_dir (path) – the path to a project directory

• params (dict) – a collection of user-supplied parameters

Returns a description of the state of the version control repository at the directory

23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

versioningit, Release 1.1.1

Return type versioningit.VCSDescription

Raises

• versioningit.errors.NoTagError – If a tag cannot be determined for the repository

• versioningit.errors.NotVCSError – if project_dir is not under the expected type
of version control

6.2 tag2version

A custom tag2version method is a callable with the following synopsis:

funcname(*, tag: str, params: Dict[str, Any])→ str

Parameters

• tag (str) – a tag retrieved from version control

• params (dict) – a collection of user-supplied parameters

Returns a version string extracted from tag

Return type str

Raises versioningit.errors.InvalidTagError – if the tag cannot be parsed

6.3 next-version

A custom next-version method is a callable with the following synopsis:

funcname(*, version: str, branch: Optional[str], params: Dict[str, Any])→ str

Parameters

• version (str) – a project version (as extracted from a VCS tag)

• branch (Optional[str]) – the name of the VCS repository’s current branch (if any)

• params (dict) – a collection of user-supplied parameters

Returns a version string for use as the {next_version} field in [tool.versioningit.format]
format templates.

Return type str

Raises versioningit.errors.InvalidVersionError – if version cannot be parsed

6.4 format

A custom format method is a callable with the following synopsis:

funcname(*, description: versioningit.VCSDescription, version: str, next_version: str, params: Dict[str, Any])→
str

Parameters

• description – a versioningit.VCSDescription returned by a vcs method

24 Chapter 6. Writing Your Own Methods

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

versioningit, Release 1.1.1

• version (str) – a version string extracted from the VCS tag

• next_version (str) – a “next version” calculated by the next-version step

• params (dict) – a collection of user-supplied parameters

Returns the project’s final version string

Return type str

Note that the format method is not called if description.state is "exact", in which case the version returned by
the tag2version step is used as the final version.

6.5 write

A custom write method is a callable with the following synopsis:

funcname(*, project_dir: Union[str, pathlib.Path], version: str, params: Dict[str, Any])→ None

Parameters

• project_dir (path) – the path to a project directory

• version (str) – the project’s final version

• params (dict) – a collection of user-supplied parameters

6.6 onbuild

A custom onbuild method is a callable with the following synopsis:

funcname(*, build_dir: Union[str, pathlib.Path], is_source: bool, version: str, params: Dict[str, Any])→ None
Modifies one or more files in build_dir

Parameters

• build_dir (path) – the path to the directory where the project is being built

• is_source (bool) – true if an sdist or other artifact that preserves source paths is being
built, false if a wheel or other artifact that uses installation paths is being built

• version (str) – the project’s final version

• params (dict) – a collection of user-supplied parameters

6.7 Distributing Your Methods in an Extension Package

If you want to make your custom versioningitmethods available for others to use, you can package them in a Python
package and distribute it on PyPI. Simply create a Python package as normal that contains the method function, and
specify the method function as an entry point of the project. The name of the entry point group is versioningit.
STEP (though, for next-version, the group is spelled with an underscore instead of a hyphen: versioningit.
next_version). For example, if you have a custom vcs method implemented as a foobar_vcs() function in
mypackage/vcs.py, you would declare it in setup.cfg as follows:

6.5. write 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

versioningit, Release 1.1.1

[options.entry_points]
versioningit.vcs =

foobar = mypackage.vcs:foobar_vcs

Once your package is on PyPI, package developers can use it by including it in their build-system.requires and
specifying the name of the entry point (For the entry point above, this would be foobar) as the method name in the
appropriate subtable. For example, a user of the foobar method for the vcs step would specify it as:

[tool.versioningit.vcs]
method = "foobar"
Parameters go here

26 Chapter 6. Writing Your Own Methods

CHAPTER

SEVEN

RESTRICTIONS & CAVEATS

• When building or installing a project that uses versioningit, the entire repository history (or at least everything
back through the most recent tag) must be available. This means that installing from a shallow clone (the default
on most CI systems) will not work. If you are using the "git" or "git-archive" vcs method and have
default-tag set in [tool.versioningit.vcs], then shallow clones will end up assigned the default tag,
which may or may not be what you want.

• If using the [tool.versioningit.write] subtable to write the version to a file, this file will only be updated
whenever the project is built or installed. If using editable installs, this means that you must re-run python
setup.py develop or pip install -e . after each commit if you want the version to be up-to-date.

• If you define & use a custom method inside your Python project’s package, you will not be able to retrieve your
project version by calling importlib.metadata.version() inside __init__.py — at least, not without a
try: ... except ... wrapper. This is because versioningit loads the package containing the custom
method before the package is installed, but importlib.metadata.version() only works after the package is
installed.

27

versioningit, Release 1.1.1

28 Chapter 7. Restrictions & Caveats

CHAPTER

EIGHT

CHANGELOG

8.1 v1.1.1 (2022-04-08)

• Do not import setuptools unless needed (contributed by @jenshnielsen)

8.2 v1.1.0 (2022-03-03)

• Added custom setuptools commands for inserting the project version into a source file at build time

– New step and subtable: “onbuild”

– New public get_cmdclasses() and run_onbuild() functions

• Moved documentation from the README to a Read the Docs site

– Established external documentation for the public library API

• When falling back to using tool.versioningit.default-version, emit a warning if the version is not PEP
440-compliant.

• The versioningit command now honors the VERSIONINGIT_LOG_LEVEL environment variable

8.3 v1.0.0 (2022-02-06)

• Changes to custom methods:

– The signatures of the method functions have changed; user-supplied parameters are now passed as a single
params: Dict[str, Any] argument instead of as keyword arguments.

– User-supplied parameters with the same names as step-specific method arguments are no longer discarded.

• Changes to the “git-archive” method:

– Lightweight tags are now ignored (by default, but see below) when installing from a repository in order to
match the behavior of the %(describe) format placeholder.

– The “match” and “exclude” settings are now parsed from the describe-subst parameter, which is now
required, and the old match and exclude parameters are now ignored.

– Git 2.35’s “tags” option for honoring lightweight tags is now recognized.

– Added a dedicated error message when an invalid %(describe) placeholder is “expanded” into itself in
an archive

29

https://github.com/jenshnielsen

versioningit, Release 1.1.1

• The file parameter to the “basic” write method is now required when the [tool.versioningit.write] table
is present. If you don’t want to write the version to a file, omit the table entirely.

• Library API:

– Config is no longer exported; it should now be considered private.

– Merged Versioningit.from_config() functionality into Versioningit.from_project_dir()

– Renamed Versioningit.from_config_obj() to Versioningit.from_config(); it should now be
considered private

8.4 v0.3.3 (2022-02-04)

• Git 1.8.0 is now the minimum required version for the git methods, and this is documented. (Previously, the
undocumented minimum version was Git 1.8.5.)

• Document the minimum supported Mercurial version as 5.2.

8.5 v0.3.2 (2022-01-16)

• Call importlib.metadata.entry_points() only once and reuse the result for a speedup (contributed by
@jenshnielsen)

8.6 v0.3.1 (2022-01-02)

• Support Python 3.10

• Support tomli 2.0

8.7 v0.3.0 (2021-09-27)

• Gave the CLI interface an -n/--next-version option for showing a project’s next release version

• Added a get_next_version() function

• Added a mention to the README of the existence of exported functionality other than get_version()

• Renamed the individual step-calling methods of Versioningit to have names of the form do_$STEP()

8.8 v0.2.1 (2021-08-02)

• Update for tomli 1.2.0

30 Chapter 8. Changelog

https://github.com/jenshnielsen

versioningit, Release 1.1.1

8.9 v0.2.0 (2021-07-13)

• The log messages displayed for unknown parameters are now at WARNING level instead of INFO and include
suggestions for what you might have meant

• “git” vcs method: default-tag will now be honored if the git describe command fails (which generally
only happens in a repository without any commits)

• Added an experimental “git-archive” method for determining a version when installing from a Git archive

• Project directories under .git/ are no longer considered to be under version control

• Project directories inside Git working directories that are not themselves tracked by Git are no longer considered
to be under version control

• Support added for installing from Mercurial repositories & archives

8.10 v0.1.0 (2021-07-08)

• Add more logging messages

• Changed default version formats to something that doesn’t use {next_version}

• “basic” tag2version method:

– If regex is given and it does not contain a group named “version,” the entire text matched by the regex
will be used as the version

– Added a require-match parameter for erroring if the regex does not match

• “basic” write method: encoding now defaults to UTF-8

• New next-version methods: "minor-release", "smallest-release", and "null"

• Replaced entrypoints dependency with importlib-metadata

• Added tool.versioningit.default-version for setting the version to use if an error occurs

• When building a project from a shallow clone or in a non-sdist directory without VCS information, display an
informative error message.

8.11 v0.1.0a1 (2021-07-05)

Alpha release

versioningit is yet another setuptools plugin for automatically determining your package’s version based on your
version control repository’s tags. Unlike others, it allows easy customization of the version format and even lets you
easily override the separate functions used for version extraction & calculation.

8.9. v0.2.0 (2021-07-13) 31

versioningit, Release 1.1.1

Features:

• Installed & configured through PEP 518’s pyproject.toml

• Supports Git, modern Git archives, and Mercurial

• Formatting of the final version uses format template strings, with fields for basic VCS information and separate
template strings for distanced vs. dirty vs. distanced-and-dirty repository states

• Can optionally write the final version to a file for loading at runtime

• Provides custom setuptools commands for inserting the final version into a source file at build time

• The individual methods for VCS querying, tag-to-version calculation, version bumping, version formatting, and
writing the version to a file can all be customized using either functions defined alongside one’s project code or
via publicly-distributed entry points

• Can alternatively be used as a library for use in setup.py or the like, in case you don’t want to or can’t configure
it via pyproject.toml

• The only thing it does is calculate your version and optionally write it to a file; there’s no overriding of your sdist
contents based on what’s in your Git repository, especially not without a way to turn it off, because that would
just be rude.

32 Chapter 8. Changelog

https://peps.python.org/pep-0518/

CHAPTER

NINE

INSTALLATION & SETUP

versioningit requires Python 3.6 or higher. Just use pip for Python 3 (You have pip, right?) to install versioningit
and its dependencies:

python3 -m pip install versioningit

However, usually you won’t need to install versioningit in your environment directly. Instead, you specify it in your
project’s pyproject.toml file in the build-system.requires key, like so:

[build-system]
requires = [

"setuptools >= 42", # At least v42 of setuptools required!
"versioningit ~= 1.0",
"wheel"

]
build-backend = "setuptools.build_meta"

Then, you configure versioningit by adding a [tool.versioningit] table to your pyproject.toml. See “Con-
figuration” for details, but you can get up & running with just the minimal configuration, an empty table:

[tool.versioningit]

versioningit replaces the need for (and will overwrite) the version keyword to the setup() function, so you should
remove any such keyword from your setup.py/setup.cfg to reduce confusion.

Once you have a [tool.versioningit] table in your pyproject.toml— and once your repository has at least one
tag — building your project with setuptools while versioningit is installed (which happens automatically if you
set up your build-system.requires as above and you’re using a PEP 517 frontend like build) will result in your
project’s version automatically being set based on the latest tag in your Git repository. You can test your configuration
and see what the resulting version will be using the versioningit command (see “Command”).

33

https://pip.pypa.io
https://peps.python.org/pep-0517/
https://github.com/pypa/build

versioningit, Release 1.1.1

34 Chapter 9. Installation & Setup

CHAPTER

TEN

EXAMPLE CONFIGURATIONS

One of versioningit’s biggest strengths is its ability to configure the version format using placeholder strings. The
default format configuration looks like this:

[tool.versioningit.format]

Format used when there have been commits since the most recent tag:
distance = "{version}.post{distance}+{vcs}{rev}"

Format used when there are uncommitted changes:
dirty = "{version}+d{build_date:%Y%m%d}"

Format used when there are both commits and uncommitted changes:
distance-dirty = "{version}.post{distance}+{vcs}{rev}.d{build_date:%Y%m%d}"

Other format configurations of interest include:

• The default format used by setuptools_scm:

[tool.versioningit.next-version]
method = "smallest"

[tool.versioningit.format]
distance = "{next_version}.dev{distance}+{vcs}{rev}"
dirty = "{version}+d{build_date:%Y%m%d}"
distance-dirty = "{next_version}.dev{distance}+{vcs}{rev}.d{build_date:%Y%m%d}"

• The format used by versioneer:

[tool.versioningit.format]
distance = "{version}+{distance}.{vcs}{rev}"
dirty = "{version}+{distance}.{vcs}{rev}.dirty"
distance-dirty = "{version}+{distance}.{vcs}{rev}.dirty"

• The format used by vcversioner:

[tool.versioningit.format]
distance = "{version}.post{distance}"
dirty = "{version}"
distance-dirty = "{version}.post{distance}"

35

https://github.com/pypa/setuptools_scm
https://github.com/python-versioneer/python-versioneer
https://github.com/habnabit/vcversioner

versioningit, Release 1.1.1

36 Chapter 10. Example Configurations

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• search

37

versioningit, Release 1.1.1

38 Chapter 11. Indices and Tables

PYTHON MODULE INDEX

v
versioningit, 1

39

versioningit, Release 1.1.1

40 Python Module Index

INDEX

Symbols
--next-version

versioningit command line option, 15
--traceback

versioningit command line option, 15
--verbose

versioningit command line option, 15
--write

versioningit command line option, 15
-n

versioningit command line option, 15
-v

versioningit command line option, 15
-w

versioningit command line option, 15

B
branch (versioningit.VCSDescription attribute), 20

C
ConfigError, 19

D
do_format() (versioningit.Versioningit method), 19
do_next_version() (versioningit.Versioningit method),

19
do_onbuild() (versioningit.Versioningit method), 19
do_tag2version() (versioningit.Versioningit method),

19
do_vcs() (versioningit.Versioningit method), 18
do_write() (versioningit.Versioningit method), 19

E
environment variable

VERSIONINGIT_LOG_LEVEL, 12, 15, 29
Error, 19

F
fields (versioningit.VCSDescription attribute), 20
from_project_dir() (versioningit.Versioningit class

method), 18

G
get_cmdclasses() (in module versioningit), 18
get_next_version() (in module versioningit), 17
get_version() (in module versioningit), 17
get_version() (versioningit.Versioningit method), 18
get_version_from_pkg_info() (in module versionin-

git), 20

I
InvalidTagError, 19
InvalidVersionError, 19

M
MethodError, 19
module

versioningit, 1

N
NoTagError, 19
NotSdistError, 19
NotVCSError, 20
NotVersioningitError, 20

P
Python Enhancement Proposals

PEP 440, 8, 9
PEP 517, 33
PEP 518, 32

R
run_onbuild() (in module versioningit), 20

S
state (versioningit.VCSDescription attribute), 20

T
tag (versioningit.VCSDescription attribute), 20

V
VCSDescription (class in versioningit), 20
versioningit

41

versioningit, Release 1.1.1

module, 1
Versioningit (class in versioningit), 18
versioningit (command), 14
versioningit command line option

--next-version, 15
--traceback, 15
--verbose, 15
--write, 15
-n, 15
-v, 15
-w, 15

VERSIONINGIT_LOG_LEVEL, 12, 15, 29

42 Index

	How it Works
	Version Calculation
	Setuptools Integration
	Setting the Version
	onbuild Step

	Configuration
	Specifying the Method
	The [tool.versioningit.vcs] Subtable
	"git"
	"git-archive"
	"hg"

	The [tool.versioningit.tag2version] Subtable
	The [tool.versioningit.next-version] Subtable
	The [tool.versioningit.format] Subtable
	The [tool.versioningit.write] Subtable
	The [tool.versioningit.onbuild] Subtable
	tool.versioningit.default-version
	Log Level Environment Variable

	Getting Package Version at Runtime
	Command
	Options

	Library API
	High-Level Functions
	Low-Level Class
	Exceptions
	Utilities
	Passing Explicit Configuration

	Writing Your Own Methods
	vcs
	tag2version
	next-version
	format
	write
	onbuild
	Distributing Your Methods in an Extension Package

	Restrictions & Caveats
	Changelog
	v1.1.1 (2022-04-08)
	v1.1.0 (2022-03-03)
	v1.0.0 (2022-02-06)
	v0.3.3 (2022-02-04)
	v0.3.2 (2022-01-16)
	v0.3.1 (2022-01-02)
	v0.3.0 (2021-09-27)
	v0.2.1 (2021-08-02)
	v0.2.0 (2021-07-13)
	v0.1.0 (2021-07-08)
	v0.1.0a1 (2021-07-05)

	Installation & Setup
	Example Configurations
	Indices and Tables
	Python Module Index
	Index

